
CIRCULATION COPY
SUBJECT TO RECALL

IN TWO WEEKS
UCRL-83674
PREPRINT

2-D FFTS OF LARGE IMAGESWITHTHE AP-120B

Richard E. Twogood

This paper was prepared for submittal to the
1980 Floating Point Systems Users Group Meeting,

San Francisco, California, April 1980

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

2-D FFTs OF LARGE IMAGES WITH THE AP-120B.

●

●

Richard E. Twogood

Lawrence Livermore Laboratory

Livermore, CA

Abstract

This paper investigates the

FPS AP-120B array processor

issues involved in implementing a 2-D FFT on the

when the data memory available is less than the

image size. After a brief review of the alternative techniques that have been

proposed in the literature (with matrix transposition, without matrix

transposition, vector radix), a recently developed “two-level” implementation

is described. An analysis of the CPU and 1/0 requirements is given, showing

that this algorithm is significantly superior to existing methods due to the

reduced 1/0 requirements.

Introduction

As in standard 1-D signal processing applications, the Fast Fourier Transform

(FFT) plays a crucial role in 2-IIdigital signal processing. Examples of

applications include nonrecursive linear filtering, some nonlinear filtering

techniques, 2-D spectral analysis, and image restoration. As a result, a

number of efficient techniques for implementing a 2-D FFT of disk-based images

Work performed under the auspices of the U.S. Department of Energy by the

Lawrence Livermore Laboratory under contract number W-7405-ENG-48.

/’

-2-

have been proposed [1]-[4]. None of these techniques is substantially better

than the others in most practical implementations due to the similarity of

their input/output (1/0) structures. Recently, however, Ari [5] proposed what

he calls a two-level matrix transposition algorithm with a particularly

efficient 1/0 structure. When applied to the problem of implementing 2-D

FFT’s of images larger than the available primary memory, this technique gives

an implementation which is superior, in general, to any other method proposed

in the literature.

In this paper, we briefly review the alternative 2-D FFT algorithms and

discuss how the new two-level algorithm gains its advantage. An analysis of

the implementation of this algorithm on the FPS AP-120B array processor is

given, followed by examples which illustrate the benefits derived by this

approach.

The analysis in this paper addresses system configurations where there is

direct transfer capability between the array processor and the disk on which

the

is ~

acc[

image is stored. This situation exists, of course, when a dedicated disk

nterfaced through a GPIOP into the array processor. At LLL, we have

mplished the same effect by implementing software that allows for direct

“device to device” transfers without passing data through the host computer.

2-D FFT of Disk-based Images

The historical approach for computing 2-D FFT’s of arrays larger than primary

storage consists of decomposing the 2-D FFT into iterated 1-D FFT’s. The

-3-

●

✎

u

●

calculation proceeds as follows: first each row in the array is transformed

with the 1-D FFT. The array is then transposed and the row transform process

is repeated (this computes the column transforms of the original array). This

three-step procedure yields the transpose of the transformed array.

A significant part of the data manipulation required by the above procedure is

a result of the matrix transpositions. A fast transposition scheme for

of dimension 2nx2n was proposed by Eklundh in [1]. Eklundh’s method,

based on the properties of the binary address expansion of the elements

matrix before and after transposition, consists of n steps. In the kth

images

of the

step

(lsk~n) every other vector of length 2k-1 is permuted with another vector

of the same length, i.e. exactly one-half of the matrix elements are permuted

in each step. The element interchanges are performed between elements in rows

spaced 2
k-1 rows apart. As a result, pairs of adjacent rows are required in

the first step, pairs of rows spaced 2 apart are required in the second step,

pairs of rows spaced 4 apart are needed in the third step, etc. If one can

fit 2j of the 2n image rows in the computer’s memory (Isjs n), it is

[1easily seen that ~ 1/0 passes are required to complete the transposition,

where the notation [x] denotes the smallest integer greater than or equal to

x. It is also readily seen that the first step requires the fewest disk
.

accesses, as 2J contiguous rows can be accessed at once to obtain the data

required for the first j steps. On the other hand, the intermediate 1/0

accesses require single line accesses (2n reads and 2n writes of disk) to

2(n-j)- n’j reads
obtain the necessary data. The final 1/0 pass requires 2

and the same number of writes of disk, where n’=[1?-2 is the number of

-4-

●

✎

b

intermediate 1/0 passes. The Eklundh transposition scheme, then, can be

characterized by the following timing equations:

n22n-2T
. ‘CPU-EK= change

“ace’
n-j+l + n,2n+1 + 22(n-j)-n’j+l}T ~

‘1/O-EK = ‘2

[1n~ 22n+1Ttran

(1)

where T
change

is the average time to permute

memory, Tacc is the access time of the disk,

rate.

two elements in the data

and Ttran is the transfer

transposition scheme by combiningTwogood and Ekstrom [2] extended the Eklundh

element permutations in the case when more than 2 rows fit into the memory

(j >1). While this resulted in an improvement in CPU time, the 1/0 structure

was identical to that of Eklundh’s technique.

Two alternative schemes for computing the 2-D FFT without a matrix

transposition have been developed in[31 and [41. Onoe’s method [31 simply

involves performing the row FFT’s, and then computing individual stages of the

column FFT’s by performing the appropriate 1/0. Harris’ method [41 involves

the same idea of accessing sets of rows to allow individual stages of the

column FFT’s to be performed, but it also combines the row FFT’s and column

FFT’s into truly 2-D FFT “butterflies”, rather than computing iterated 1-D

-5-

.

transforms. Careful examination of those algorithms, however, shows that they

require exactly the same 1/0 procedure as Eklundh’s matrix transposition

scheme. This is a result of the similarity between data requirements for the

matrix transposition and the column

successive powers of 2 are required

column FFT.

FFT, i.e.

by either

As an example, consider the case n=5 and j=2,

column elements spaced by

the matrix transposition or the

i.e. we have an image that is

32x32 and only4 rows of the image fit into the memory. The 1/0 structure for

this case is illustrated in Figure 1; the 32 rows are represented in the

vertical direction and the ~ =3 required 1/0 passes in the horizontal[1J
direction. Note that 4 contiguous rows are read at a time in the first pass,

but sets of 4 single line transputs are required in the second pass. The

third and final pass requires transputs of 2 contiguous lines at a time.

Until recently, the 1/0 scheme illustrated by the above example was the best

available one, and was incorporated into each of the 2-D FFT algorithms of

[11- [41. A new “two-level” algorithm was proposed in [5], however, which

[1noffers significant improvement in the 1/0 for all cases where ~ >2. This

technique is based on the usage of a relatively small, in general, scratch

storage on the disk being used. It gains its 1/0 advantage by writing the

results of the intermediate passes in contiguous chunks to the scratch store.

Thus, while 2n reads of one row each are still required in the intermediate
. .

passes, only 2n-J writes of 2J rows are required for those passes. While

the CPU requirements are unchanged for this technique (identical to the

-6-

8

8

extended-Eklundh method), the 1/0 times are significantly improved, with

(~n-j+l ())+nt 2n+#-j + # + 22@j)-n’jTacc
‘1/o-2L= (2)

n’zO~ 22n+l (n’+2) ‘tran

(

Zn-j+l + z
)

2(n-j)+l T + 22n+2Ttran n’=0
acc

[1nwhere n’= ~ -2 is once again the number of intermediate 1/0 passes. We note

that Equ. (2) above agrees with the results of Table II in [51 , except for

the case n’=o. For that case, the results of [5] are incorrect as they ignore

the fact that the write accesses need not necessarily be done for individual

lines on the final pass.

~
1 2 3

0 1
1 2 1

‘?
4 2

4 1

2 2 3
3 4

B
3 2

3 6
4

12 1 1
4 2

?
4 8

16
5 [‘2,

1

4 2
20 1

6 3
3
4 *

24 1
1 2 5

3
4 6

28 1
8 2 7

4 n

?.!s R/o u/o
o 1 1

1 3 1
G c
7 7

4 1 1
2 3

5
3
5

7 7
n 1 1

3 3’ 3

5 5
1 7

12 1 1
4 3 ?

5 1
7 1

16 2 2
5 4 4

e E
20 7 2

6 a
6 6
B B

24 2 ?
7 4 4

6 6
a 8

20 2 1 2
8 4 4

6 I 6
n 8

B
1

0

3cratch 1,3,5.72
2460

stow 4

1357
2,4,6,86

468

Figure 1. Eklundh 1/0 Structure Figure 2. Two-level Structure

-7-

3

4

To better understand the 1/0 structure of this two-level algorithm, consider

the same n=5 and j=2 example as before. A layout of the 1/0 required is given

in Figure 2. Note that there is but one intermediate stage which uses the

scratch store, and 8 lines of scratch store are required. In general, this

n’

x
2 ‘-kj lines of scratch storage, as shown in [5].technique requires

k=l

FFT timing: With the above results, we are now in a position to characterize

the total computational requirements of the 2-D FFT. Assuming a real input

image, we require N=2n real FFT’s

transposition,; - 1 complex FFT’s

on the columns. In addition, the

of length N on the rows. After

and 2 real FFT’s of length N are performed

array processor CPU time to perform the

required vector swaps must be accounted for. As shown in [2], the CPU time

for the matrix transposition is

Txp=~(n’+1) (22n-22n-j ~ (22n-2n+jn’+j
‘Tchange 2 ‘Tchange (3)

where T
change

is again the average time to permute 2 elements in the data

memory. The total CPU time is therefore

‘CPU4 x (N+2)TRFFTN+ ($1)‘CFFTN+ ‘XP

where TRFFTN and ‘CFFTN
are the AP times to perform real and complex

N-length FFT’s, respectively. The total FFT time is therefore

‘2DFFT ‘TCPU-2L + ‘1/O-2L

(4)

(5)

-8-

This approximate timing will, of course, hold only if the AP calls are

effectively “vector function chained” and if the host CPU performs its disk

address calculations, loop indexing, and control functions efficiently.

A few example analyses of some practical image processing applications are

given in Figure 3. In the examples, we have assumed an FPS AP-120B with 167ns

memory, and assumed a CDC 9762 with Tacc ~ 20 ms and Ttran ~41As.

Lines Tcpu-2L ‘1/O-2L T2DFFT
nj Transferred Accesses

83 1536 736 .47 sec 16.3 sec 16.8 sec

94 3072 1184 2.0 sec 30.0 sec 32.0 sec

95 2048 544 1.8 sec 15.1 sec 16.9 sec

10 4 6144 2496 8.3 sec 75.1 sec 83.4 sec

10 5 4096 2112 7.7 sec 59.0 sec 66.7 sec

11 3 16384 8192 37.6 sec 298 sec 336 sec

11 4 12288 5504 35.0 sec 210 sec 245 sec

11 5 12288 4416 35.0 sec 189 sec 224 sec

Figure 3. Example 2-D FFT Timings Using Two-Level Algorithm

As a comparison, consider the (n=ll, j=3) case, which corresponds to a

2048x2048 image to be transformed and only 16K of data memory. As the table

shows, 8192 accesses are needed and the timing estimate is 336 seconds. The

extended Eklundh method, on the other hand, would require 10752 accesses and

approximately 388 seconds.

-9-

While the above results are approximate predictions, we have achieved fairly

good correlation with the actual timings of the 2-D FFT progam implemented at

LLL. For 512x512 images with 16K of data memory (n=9, j=5), we have timed the

2-D FFT at 18 seconds, which agrees closely with the 16.9 seconds predicted.

The largest discrepancies are caused by the relatively costly address

calculations and control performed in the host PDP 11/70.

Conclusions

Some of the issues involved in the implementation of large 2-D FFT’s on

memory-limited processors have been discussed. A brief comparison of existing

techniques for 2-D FFT’s was given, followed by an analysis of the benefits

derived by using a new two-level 1/0 structure for the implementation of

matrix transpositions. The implementation of this two-level algorithm for the

2-D FFT with an FPS AP-120B array processor was discussed, with timing

analyses and examples for image processing applications of practical interest.

NOTICE

This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States_.—..-
Depattrnent of Energy, nor any of their emploYees, nor anY of their
contractors, subcontractors, o: their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not infringe
privately-owned rights.

Reference to a company or product name does not imply approval or
recommendation of the product by the University of California or the U.S.
Department of Energy to the exclusion of others that may be suitable.

-1o-

References

(1) J. O. Eklundh, “A Fast Computer Method for Matrix Transposing,” IEEE
Trans. Comp., Vol. C-21, July 1972, pp. 801-803.

(2) R. E. Twogood and M. P. Ekstrom, “An Extension of Eklundh’s Matrix
Transposition Algorithm and Its Application in Digital Image
Processing,” IEEE Trans. Comp., Vol. C-25, September 1976, pp.
950-952.

(3) M. Onoe, “A Method for Computing Large-Scale Two-Dimensional
Transform Without Transposing Data Matrix,” Proc. IEEE, Vol. 63, No.
1, January 1975, pp. 196-197.

(4) D. B. Harris, et al., “Vector Radix Fast Fourier Transform,” Proc.

1977 IEEE Inter. Conf. on Acoustics, Speech, and Signal Proce=q,
Hartford, Connecticut, May 1977, pp. 548-551.

(5) M. B. Ari, “On Transposing Large 2nx2n Matrices,”” IEEE Trans.
Comp., Vol. C-27, January 1979, pp. 72-75.

